User login

Research Areas

Implantable Electrode, for collecting brain neural signals. Karen Cheung.

Circuits of the Future? Crossed single-walled carbon nanotubes. Dr. Alireza Nojeh.

Micromotors and Sensors: Mechanical parts are etched in silicon. Dr. Edmond Cretu.

Research in our group is in areas:

Research projects:

The goal of this project is to design and construct a portable and cost effective magnetic resonance imaging (MRI) instrument that is capable of resolving features at microscale to image flow fields of complex fluids in capillary tubes.
Schematics of MRI for Flow Visualization Instrument
Nanoscale devices where the conducting channel is in vacuum are becoming more and more attractive as we search for new technologies to make devices working in the THz regime. We are investigating highly controllable nanoscale electron emitters to enable vacuum nano-electronic devices.
The goal of this proposed project is to develop a revolutionary semiconductor laser transmitter technology, based on the homogeneous integration of photonics and electronics. The new device, a TX-VCSEL, is the integration of a high frequency Heterojunction Bipolar Transistor (HBT) with a Vertical Cavity Surface Emitting Laser (VCSEL).
We are studying the properties of carbon nanotube (CNT) biosensors using numerical simulation. The research is focusing on the electronic transport through CNTs that are exposed to various amino acids and short peptides. Using a combination of molecular dynamics, density functional theory, and quantum transport calculations we are able to predict how the adsorption of these peptides affects the transport through the tubes.
Molecular Quantum Cellular Automata (QCA), is an exploratory computing paradigm in which information is encoded in the electronic charge configuration of a QCA cell (built from one or two individual molecules). The charge interaction between neighbouring cells enables the transmission and processing of information. Our research focus is on the design and simulation of QCA using numerical tools such as the QCADesigner tool developed in our lab.
QCA processor designed using QCADesigner
This project proposes to fabricate Optical Micro-Electro-Mechanical Systems (O-MEMS)for optical acceleration measurements. These would allow for more sensitive, accurate, and reliable measurements, exploiting advantages such as the linear relation between the velocity and the Doppler frequency shift, and the high, wavelength-dependent resolution levels achievable.