User login

Continuous size-separation of airborne particles in a microchannel for aerosol monitoring

Publication Type:

Journal Article

Source:

IEEE Sensors Journal , IEEE, Volume 11, Issue 11, p.2790-2797 (2011)

URL:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6008616&tag=1

Abstract:

The real-time monitoring of aerosols is important for protecting human health and the environment. The small size of microchannels and their potential for integration with sensing technologies suggest them as a promising tool for the next generation of aerosol sensors. To that end, we present a novel microfluidics-based system for the size-separation of aerosols using the centrifugal force exerted on each particle as it travels around a curve. We demonstrate with simulations and experiments the separation by size of mixtures of aerosolized microspheres with diameters ranging from 0.2–3.2 $mu{rm m}$. With bidisperse particle sizes in a single-outlet channel, a separation efficiency is defined to quantify how much of each of the two sizes of particles are located in distinct regions of the channel; the separation of mixtures at up to 80% separation efficiency is demonstrated. Particles are also separated into two or three outlets, each containing a different distribution of particles by size. Both experimental particle position and separation efficiency results match well with the simulations.

Faculty Member(s): 
Boris.Stoeber
Research Area(s): 
Sensors and Actuators